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Thirring model and h e a r  Klein-Gordon equation 
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Institute of Mathematics of the Academy of Science of Ukraine, Tereshchenkivska Street 
3, Kiev-4, Ukraine 

Received 12 February 1993, in final form 19 April 1993 

Abstract. We havesuggested a substitution, reducing generalized Thining equations to a 
linear Klein-Gordon equation. Using the above substitution one can obtain inhirely 
many exact solutions of the nonlinear Thirring  system^ without applying the inverse 
scattering method. 

When discussing the generalized Thimng model, we mean the following system of 
nonlinear partial differential equations: 

where U = u(x, y) ,  U = u(x, y) are smooth complex-valued functions, m, AI, A, are real 
constants, IulZ=uu* and I U ~ ~ = U U * .  

Provided A, =&=A equations (1) coincide with the classical Thimng model that is 
integrable by means of the inverse scattering method [3]. Not long ago it had been 
established by David [l] that the generalized Thimng model (1) is also integrable by 
the said method and, therefore, had soliton solutions. 

In this letter we restrict ourselves to the case A I =  -&=A, i.e. we consider the 
following system: 

To establish correspondence between (2) and the linear Klein-Gordon equation 

wxy + mZw = 0 (3) 
we apply the ansatz [2] 

U = F1 exp{iG + iC} 
U = Fz exp{iG - ic) (4) 

where Fl, Fz, G are some real-valued functions, CEBBI. 

equations for Fl, Fz, G: 

(i) Fly = - mF2 sin ZC, 
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Substitution of (4) into (2) yields a system of four nonlinear partial differential 
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(ii) F,=mFlsin2C 

(iii) G,= - mFl F;’ cos 2C+AF: 

(iv) Cy= -mFzF;’cos2C-AF~. 
(5 )  

Analysis of the over-determined system (5) shows that in the eases C#zn, nEH 
and C # z / 4 + z n ,  n e Z  its general solution is of the form F,=Fi(ax+Dy), G =  
G(ax+py). Such plane-wave solutions are well known, that is why we restrict 
ourselves to the cases C= m and C= d 4  + zn (because of periodicity of the functions 
sinZC, cos2C one can choose C=O and C=n/4). 
The case 1. C=z/4. In this case system (5) reads: 

(i) Fly = -mFz 

(ii) F,=mFl 

(iii) G,=AF: 

(iv) G, = - AF:. 
Since 

(GX), = UF, Fly = - WmF, Fz = - WFzF, = (Gy)x 
system (6)  is compatible and its general solution can be represented in the form 

FI= w(x. Y) 

G=A ~u~(z,y)dr-rlm-~ I.:(., r )dr  

Fz = - m-’w,(x, y) 

1.‘ L 
where a, b are some real constants and w = w(x, y) is an arbitrary solution of (3). 

nonlinear system (2) of the form 
Thus, each solution of the linear equation (3) gives rise to the exact solution of the 

w’(z, y) dr - iAm-Z 

(7) i z  
u = -m-‘wy exp( -y+ i,l[ wZ(q y) dr - ihrZ 
where w =  w(x, y )  is an arbitrary solution of (3). 

The c u e  2. C=O. From the first pair of equations of system (5) it follows that 
Fl= F,(x), Fz= F2(y). Substituting these expressions into the remaining equations of 
system (5) and integrating, we get 

F F - a  
1- 2- Y 

G = 2 m ( ~ y ) ” ~  + Ad In(xy-’) a E W. 
The above formulae after being substituted into ansatz (4) with C=O yields the 

following class of exact solutions of the initial system (2): 

u=m-1/2 exp{-2im(xy)”’+ 22 In(xy-’)} 
U = ay-”’ exp{-2im(~y)”~+ i,laZ h(xy-’)}. 
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In conclusion, let us note that by force of invariance of system (2) under the one- 
parameter group of gauge transformations 

U' = U  exp(i0) U ' = v exp(i0) e E R 1  

solution (7) can be rewritten in the equivalent form 
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